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ABSTRACT

aadl |

The aim of this paper is to generalize the concept of a group where the triple
(G, E, %) represents a generalized group ifGisa nonempty set, E represents an
equivalence relation defined on G and the operation * is a function of GxG
satisfying some conditions. The paper also reveals some concepts and
provides some examples related to generalized groups.
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1. Introduction

A generalized group has a deep physical background in the unified
gauge theory, see (Molaei, 2000). The concept of equivalence
relations will be used to generalize the concept of a group which has
wide applications in our life. The aim of this work is to introduce the
concepts of generalized groups, generalized subgroups, and
generalized group homomorphisms.

This work will open a new area for scientific research. Indeed, the
concept that had been generalized in this work will be the beginning
of a lot of scientific research based on this generalized concept.

Historically, there have been several attempts to generalize the
concept of group. Clifford characterized the semigroups that admit
relative inverse (Clifford, 1941). A semigroup (S,*) is called a
semigroup admit relative inverses if for any x € S there existe,y €
Ssuchthate xx =x*xe =xandx xy = y x x = e. Later, these
semigroups were called Clifford semigroups.

Molaei introduced generalized groups, as a class of algebras of interest
in physics (Molaei, 1999). A semigroup (S,*) is called a generalized
group if for any x € S there exist unique elements e(x),x™! € S
such that e(x)*x =x*e(x)=x and x*xx 1=x"1xx=
e(x). We call these semigroups Molaei generalized groups.

Itis known that Molaei generalized groups are tools for constructions
in unified geometric theory and electroweak theory. Aralijo and
Konieczny showed that Molaei generalized groups are the
completely simple semigroups (Aratjo and Konieczny, 2004; see also
Akinmoyewa, 2009).

In this work, we generalize the concept of group using different
meanings from Vagner (Vagner, 1952) generalized groups (Santilli,
1979), Clifford semigroups (Clifford, 1941; Clifford and Preston,
1961) and Molaei generalized groups (Molaei 1999 and 2000).
Molaei generalized group will be a special case of generalized group
which has been introduced in this work.

This paper is organized as follows:

® In Section 2: We begin by generalize the concept of a group as
follows. Roughly speaking, a triple (G,Ex)is called a generalized
groupif G is anonempty set, E is an equivalence relation on G, and *
is a function on G X (@ that satisfies some conditions. New concepts
are introduced as well as new examples of generalized groups. In
addition, we investigate if some results that are true in classical group
theory are also true in generalized groups.

(] In Section 3: We continue our discussion of the basic properties of
generalized groups with special attention to generalized subgroups.
(] In Section 4: We consider one of the most important fundamental

ideas of algebra, homomorphisms of generalized groups.

2. Generalized Groups

In this section, we generalize the classical definition of a group.
Throughout this work, we consider a triple of the form (G, E,x),where
G is an arbitrary nonempty set, E'is an equivalence relation on G, and
* is a function defined from G X G to aset X containing G.

The following definition widens the scope of groups and preserves
the classical ones as special cases.

2.1. Definition:

A triple (G, E,x) is a generalized group if it satisfies the following
conditions:
i. Closure:x xy € G forany x,y € G.
ii. Associativity: X * (y x z) = (x *y) x zforany x,y,z € G.
. Identity: forany t € G, thereis e(t) € [t] suchthate(t) x x =
x *e(t) = x forany x € [t].
iv. Inverses: for any t € G and x € [t] there is x ™ € [t] such that
xxx~1 =e(t).

Where [t] denotes the equivalence class that contains t € G.

Ageneralized group (G, E,*) with E begin the universal equivalence
relationon G, L.e. E = G X G, is a group. Throughout this work, one
can see that all concepts (generalized subgroups, generalized normal
subgroups, generalized homomorphisms, etc.) with respect to a
generalized group (G, E,*) where E is the universal equivalence
relation on G, coincide with the corresponding ones with respect to
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the classical concepts.

Often, if there is no confusion concerning E and *, we denote
(G, E,*) simply by stating G.

The following proposition says that from a collection of pairwise
disjoint groups we can construct a generalized group. But, in the
main, a generalized group is not just a union of a collection of
pairwise disjoint groups, see 2.5. Example.

2.2. Proposition:

Assume that {(G;,*;)};e is a collection of pairwise disjoint groups
(resp. semigroups), i.e. G; N Gj = @ for any i,j € Awithi # j and
E is an equivalence relation on U;c4 G defined by xEy iff x,y € G;
for some i € A. If we define * on Ujeq G XUjeq G by x xy: =
xx;yifx,y €G;forsomei €A, andx*y:=xifx €G;,y €
Gj,i # j for some i,j € A. Then, the triple (Ujcy G,E*) is a
generalized group.

The following proposition shows that Molaei's generalization is a
special case of the generalization detailed in this article.

2.3. Proposition:

Assume that (G,*) is a Molaei generalized group. Let E be an
equivalence relation defined on G by xEYy iff e(x) = e(y) for any
X,y € G.Then, (G, E,x) is a generalized group.
In Adeniran er al (2009), they show that an abelian Molaei
generalized group is a group. This is not true in the generalization
detailed in this article as shown in 2.8 Example.

2.4. Proposition:

For a generalized group G and x € G, we have the following:

1 =[x =[eM)]. »

L The identity element e(x) of [x] is unique.

1. The inverse X ™~ is unique.

iv. Foranyx,y € G, e(x) = e(y) iff [x] = [y].
V. e(e(x)) =e(x1) = e(x).

Proof. (i) Itis clear, since e(x), x ™1 € [x].

(ii) Suppose that e; (x) and e; () are both identities elements of X.
Then, for t € [x] , t =te(x) =e(x)t and t =te,(x) =
e,(x)t.Since, e (x), e5(x) € [x] and e (x), e5 (x) are identities of
[x] . eix) =ei(x)e(x) = ex(x)e;(x) and  ey(x) =
e;(x)eq (x) which implies that e (x) = e, (x).

(i) Suppose x has two inverses y,z € [x]. Then,y = ye(y) =
yve(x) = yxz = e(x)z = e(2)z = z

(iv) Let e(x) = e(y). Since e(x) € [x] and e(y) € [y¥], e(x) =
e(y) € [x] N [y] and hence [x] = [y]. Conversely, if [x] = [y],
then by uniqueness of the identity e(x) = e(y).

(v) The proof s directly obtained from part (iv), since e(x), x ™1 € [x].

In the following, we introduce some examples of generalized groups
which are not groups.

2.5. Example:

Consider the set Z;,: = {0,1,2,-:+,11}.  Define the equivalence
relation E on Z;, by 7Es iff there exists k € Z such that r =
S+123k for any7,s € Z;,. The equivalence classes of this relation
are [0] = {0,3,6,9}, [1] = {1,4,7,10},[2] = {2,5,8,11}. Let t=
mln[ ] fort € le and k;: = Tt for ranyt€ Z1,. Then, 0 =0,
1—1 2—2 3=0,4=15=2,6=0,7=1,8=2,9=0,

1 1,11 2 and k0—0k1—0k2—0k3—1k4—
Lks=1ks=1ks=2k; =2kg=2ky=3ky=
3,k11 = 3.Assume that the binary operation * on Z;, is defined by

rxs =7+1,3(k, + k) for r,s € Zq,.

From Table 1, the triple (Z;,, E,*) is a generalized group with  the
identity element of [t] and 071 =0,1"1=1,2"1=2,3"1 =
9,471 =10,51=11,6"1=6,71=781=89"1=
3,107t =4, 117! = 5. 0ne can check ea5||y that (le,*) is not a
group.

Table 1: The binary operation * on Zj .

* 0 1 2 3 4 5 6 7 8 9 10 1
0 0 0 0 3 3 6 6 6 6 9 9 9
1 1 1 1 4 4 7 7 7 7 10 10 10
2 2 2 2 5 5 8 8 8 8 1" 1" "
3 3 3 3 6 6 9 9 9 9 0 0 0
4 4 4 4 7 7 10 10 10 10 1 1 1
5 5 5 5 8 8 1" " 1" " 2 2 2
6 6 6 6 9 9 0 0 0 0 3 3 3
7 7 7 7 10 10 1 1 1 1 4 4 4
8 8 8 8 " " 2 2 2 2 5 5 5
9 9 9 9 0 0 3 3 3 3 6 6 6
10 10 10 10 1 1 4 4 4 4 7 7 7
11 11 11 11 2 2 5 5 5 5 8 8 8

2.6. Example:

Let R be the set of all real numbers and fixg ER, 0 < g < 1.
Define E on R by xEy iff there is a k € Z such that x = q*y for
any x,y € R. One can easily show that E is an equivalence relation.
Now, define *q by

x*qy = qRx for x,y €R,
where x: = max([x] N [0,1)) and k,: = log,(x/x) for any x €
R. Clearly, the operation x4 is well defined. For any x,y € [t] and
t € R, we can check that @) =X =1t,¢"x =%, ¢ rx =X,
kz =0,k kyz = ky, and k -1,z = —k,,. Also, we can show that
for[t] € Randx,y,z € [t]
cxxqy =qTOTet,

Koyt ke

(Y *q 2) = x x¢ (g"**y)  =¢q i ky+kzy}x =
kzx, and snmnlaﬁy (Xx*q¥)*qz= qFathythay,
ot *q X = q{k +k"}(t) = qu(t) = x,and similarly x %, t=x.
Hence, the triple (R, E,*q) is a generalized group.

qk +k$

2.7. Example:

Fixw € R, w > 0. Assume the triple (R, E,*,,) where E is defined
by xEYy iff there is k € Z such that x = y + kw. Easily, one can
show that E is an equivalence relation. The binary operation *,, is
definedbyx %, y =x + (kx + ky)w for x,y €R,

where t: = min([t] N [0,9)) and k;: = % for any t € R. The
operation %, is well defined. One can check for any x,y € [t] and
tERthat X)) =x=t, x+kyw=%,x—k,w=%,kz=0,
kz+kyw = ky,and kz_i o = —k;. Now, for [t] € R, we have the
following:

«Foranyx,y € [t],x xo ¥y =t + (ky + ky)w € [t].
«Foranyx,y,z € [t],wehave x %, (¥ *, 2) = x %, (¥ + (ky +

kzgw) =x+ (k(7+(ky+kz)w) + kx) w=x+(ky+k,+
ky

)
and similarly (x *, ¥) *, z =x + (kx +ky + kz)a) which show
that %, is associative on [t].
cForx € [t], Txpx = () + (kg + k) = T+ (0 + ko =
X +kyw=x and x *, t—x+(k +hp)w =X+ kew = x.
Therefore t is the identity element of [t].

Hence, the triple (R, E,*,,) is a generalized group.

2.8. Example:

Consider the set Zg:= {0,1,2,3,4,5}. Define the equivalence
relation E on Zg by TEs iff there exists k € Z such thatr = s+42k
or S = r+42k. Then clearly, the equivalence classes are [0] =
{0,2,4} and [1] = {1,3,5}. The binary operation * on Zg is defined
by Table 2. This triple (Zg, E,*) is an abeilan generalized group and
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(Zg,*) is not a group.

Table 2: The binary operation * on Zg.
3
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3. Generalized Subgroups

In this section, we introduce and study the concept of a generalized

subgroup.

3.1. Definition:

A nonempty subset H of a generalized group (G, E,x) is said to be a
generalized subgroup if (H, E,*) is a generalized group.

The following proposition gives an easier criterion to decide whether
asubset of a generalized group G is actually a generalized subgroup.

3.2. Proposition:

Assume that G is a generalized group and @ # H S G.Then, His a
generalized subgroup if it satisfies the following conditions:
I X * EHforanyx,yEH,

1I. e(x € Hforanyx EH,
m x YeH.

3.3. Theorem:

Assume that G is a generalized group and @ # H € G. Then,H is a
generalized subgroup iff x x y ™1 € H foreachx,y € H.

Proof. For the “only if” part: Let H be a generalized subgroup and
X,y € H. Since H is a generalized subgroup, y™* € H. Then,
x,y~1 € H whichimplies that x * y~1 € H. For the “if” part: Let us
assume thatx * y~1 € H for eachx,y € H. Since H = ¢, 3t € H
and by assumption, we have e(t) =t xt~* € H. If y € H, then
e(y) € H which implies that y™* = e(y) * y~! € H. Finally, for
x,yEH, x,y Y €H and then xxy=x*(y™ )1 €H . In
section 3.2. Proposition, H is a generalized subgroup.

3.4. Remark:

Let G be a generalized group. Then, the following statements hold:
i G and {e(t)} for each t € G are generalized subgroups of G.

B They are called trivial generalized subgroups of G.

1. If [t] is a generalized subgroup of G for each t € G, then G is a

union of pairwise disjoint generalized subgroups.

1. If G is a group, then every generalized subgroup of G is a

. subgroup of G.

Iv. The intersection of a family of generalized subgroups is
necessarily a generalized subgroup.

3.5. Example:

Consider the generalized group (R, E,*;) which is defined in
Example 2.6. Define the subsets Hy, H; as, Hy:= {x € R:k, €
27} and Hy: = {x € R:k,, € 2Z + 1}. We use Theorem 3.3 to
show that Hj is a generalized subgroup, but H; is not a generalized
subgroup. Letx,y € Hy with [x] = [y]. Then, x =y and ky, k,, €
2Z. Note that —k,, € 2Z, and k, — k,, € 2Z. Now, xxy 1=
q*~*yX € Hy.Hence, Hy is ageneralized subgroup. However, H; is
not a generalized subgroup, because g3x, q°x € H, and q3x *
(@)™ = q*x*q7x = q*x & H,.

4. Homomorphism of Generalized Groups

In this section, we give a definition of a homomorphism of
generalized groups with some results.

4.1. Definition:

Assume that G and G’ are generalized groups. A map f:G — G is
called a homomorphism if for any a,b € G, we have f(ab) =
f(@f (b), and [f(a)] = [f(D)] if [a] = [b].The set Ker, (f): =
{x € G: f(x) = e(a)}iscalled the kernel of f with respectto a € G.

The following theorem shows some of the basic results of the
generalized groups homomorphisms.

4.2. Theorem:

Let G and G’ be generalized groups and f:G — G' be a
homomorphism. Then:

i fle(@) = e(f(@).

o fl@)=F@)™

1. f(H) is a generalized subgroup of G’ for any generalized

. subgroup H of G.

V. Ker, (f) is a generalized subgroup of G fora € G.

V. f isinjective iff Ker, (f) = {e(a)}foralla € G.

Proof. (i) Let b = f(e(a)) for a € G. Then, b = f(e(a)) =
f(e(a)e(a)) = f(e(a))f(e(a)) = bb which implies that
e(b) = b.Thatis,e(f(a)) = f(e(a)).

(i) Let b=at . Then, e(f(a)) = f(e(a)) = f(aa™t) =
f(ab) = f(@f(b) and e(f(a)) =f(e(@) = f(a™ta) =
flaHf(a) = f(b)f (a) which show that f(b) is the inverse of
f (@), completing the proof of (ii).

(iii) Let K = f(H). It suffices to check that K is nonempty and
ab 1 €K for any a,b € K. Since H # ¢, there is a € H which
implies that f(a) EK ; and so K# ¢ . If a,b €K , then
f'l(a) f- 1(b) € H and then f~1(a)(f~*(b))" € H. Now,

i S =

(iv) Let a € G . Since e(a) € Kery(f), Kera(f) # ¢ . Now, if
x,y € Kery(f), then f(x) = f(y) = f(e(a)). We have

-1y — -1y — -1
1 =1L D N
= f(e(@)f(e(@)) = f(e(a)).

This implies that xy_1 € K.Hence, K is a generalized subgroup.

(iv) Assume thatf is injective. Then, for a € G there is at most one
element that can be sent to the identity e(f(a)). Since f (e(x)) =
e(f(x)), Kery(f) = {e(a)}. Conversely, let Ker,(f) = {e(a)}
for all a € G and f(x) = f(y) for some x,y € G . Then,

— 1 — -1 —
PG = LGl R S5 E%en 0, and then

x71y = e(x). Thus,x~ = y~1, but the inverse is unique and so
X = y. Therefore,f Is |n|ective.
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