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 الملخص 
زمرة معممة إذا كانت   ,G,E)⋆يمثل الثلاثي )، حيث  دف البحث إلى تعميم مفهوم الزمرة يه
G     مجموعة غير خالية وE     تمثل علاقة تكافؤ معرفة علىG     دالة على     ⋆والعمليةG×G 

البحث يكشف  كما  الشروط.  بعض  الأمثلة   عن  تحقق  بعض  ويقدم  المفاهيم  بعض 
 .المرتبطة بالزمر المعممة

 

ABSTRACT 
 

The aim of this paper is to generalize the concept of a group where the triple 
(G, E, ⋆) represents a generalized group if G is a nonempty set, E represents an 
equivalence relation defined on G and the operation ⋆ is a function of G×G 
satisfying some conditions. The paper also reveals some concepts and 
provides some examples related to generalized groups. 
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1. Introduction 

A generalized group has a deep physical background in the unified 
gauge theory,   see (Molaei, 2000). The concept of equivalence 
relations will be used to generalize the concept of a group which has 
wide applications in our life. The aim of this work is to introduce the 
concepts of generalized groups, generalized subgroups, and 
generalized group homomorphisms. 
This work will open a new area for scientific research. Indeed, the 
concept that had been generalized in this work will be the beginning 
of a lot of scientific research based on this generalized concept. 
Historically, there have been several attempts to generalize the 
concept of group. Clifford characterized the semigroups that admit 
relative inverse (Clifford, 1941). A semigroup (𝑆,⋆)  is called a 
semigroup admit relative inverses if for any 𝑥 ∈ 𝑆 there exist 𝑒, 𝑦 ∈
𝑆 such that 𝑒 ⋆ 𝑥 = 𝑥 ⋆ 𝑒 = 𝑥 and 𝑥 ⋆ 𝑦 = 𝑦 ⋆ 𝑥 = 𝑒. Later, these 
semigroups were called Clifford semigroups. 
Molaei introduced generalized groups, as a class of algebras of interest 
in physics (Molaei, 1999). A semigroup (𝑆,⋆)  is called a generalized 
group if for any 𝑥 ∈ 𝑆  there exist unique elements 𝑒(𝑥), 𝑥−1 ∈ 𝑆 
such that 𝑒(𝑥) ⋆ 𝑥 = 𝑥 ⋆ 𝑒(𝑥) = 𝑥  and 𝑥 ⋆ 𝑥−1 = 𝑥−1 ⋆ 𝑥 =
𝑒(𝑥). We call these semigroups Molaei generalized groups. 
It is known that Molaei generalized groups are tools for constructions 
in unified geometric theory and electroweak theory. Araújo and 
Konieczny showed that Molaei generalized groups are the 
completely simple semigroups (Araújo and Konieczny, 2004; see also 
Akinmoyewa, 2009). 
In this work, we generalize the concept of group using different 
meanings from Vagner (Vagner, 1952) generalized groups (Santilli, 
1979), Clifford semigroups (Clifford, 1941; Clifford and Preston, 
1961) and Molaei generalized groups (Molaei 1999 and 2000). 
Molaei generalized group will be a special case of generalized group 
which has been introduced in this work. 

This paper is organized as follows: 
• In Section 2: We begin by generalize the concept of a group as 

follows. Roughly speaking, a triple (𝐺, 𝐸,⋆) is called a generalized 
group if 𝐺 is a nonempty set, 𝐸 is an equivalence relation on 𝐺 , and ⋆ 
is a function on 𝐺 × 𝐺 that satisfies some conditions. New concepts 
are introduced as well as new examples of generalized groups. In 
addition, we investigate if some results that are true in classical group 
theory are also true in generalized groups.  

• In Section 3: We continue our discussion of the basic properties of 
generalized groups with special attention to generalized subgroups. 

• In Section 4: We consider one of the most important fundamental 
ideas of algebra, homomorphisms of generalized groups. 

2. Generalized Groups 

In this section, we generalize the classical definition of a group. 
Throughout this work, we consider a triple of the form (𝐺, 𝐸,⋆), where 
𝐺 is an arbitrary nonempty set, 𝐸 is an equivalence relation on 𝐺, and 
⋆ is a function defined from 𝐺 × 𝐺 to a set 𝑋 containing 𝐺. 
The following definition widens the scope of groups and preserves 
the classical ones as special cases.   

2.1. Definition: 
A triple (𝐺, 𝐸,⋆)  is a generalized group if it satisfies the following 
conditions:   

i. Closure: 𝑥 ⋆ 𝑦 ∈ 𝐺 for any 𝑥, 𝑦 ∈ 𝐺.  
ii. Associativity: 𝑥 ⋆ (𝑦 ⋆ 𝑧) = (𝑥 ⋆ 𝑦) ⋆ 𝑧 for any 𝑥, 𝑦, 𝑧 ∈ 𝐺. 

iii. Identity: for any 𝑡 ∈ 𝐺, there is 𝑒(𝑡) ∈ [𝑡] such that 𝑒(𝑡) ⋆ 𝑥 =
𝑥 ⋆ 𝑒(𝑡) = 𝑥 for any 𝑥 ∈ [𝑡].  

iv. Inverses: for any 𝑡 ∈ 𝐺 and 𝑥 ∈ [𝑡] there is 𝑥−1 ∈ [𝑡] such that 
𝑥 ⋆ 𝑥−1 = 𝑒(𝑡).  

Where [𝑡] denotes the equivalence class that contains 𝑡 ∈ 𝐺.  

A generalized group (𝐺, 𝐸,⋆) with 𝐸 begin the universal equivalence 
relation on 𝐺; i.e. 𝐸 = 𝐺 × 𝐺, is a group. Throughout this work, one 
can see that all concepts (generalized subgroups, generalized normal 
subgroups, generalized homomorphisms, etc.) with respect to a 
generalized group (𝐺, 𝐸,⋆)  where 𝐸  is the universal equivalence 
relation on 𝐺, coincide with the corresponding ones with respect to 
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the classical concepts. 
Often, if there is no confusion concerning 𝐸  and ⋆ , we denote 
(𝐺, 𝐸,⋆) simply by stating  𝐺. 
The following proposition says that from a collection of pairwise 
disjoint groups we can construct a generalized group. But, in the 
main, a generalized group is not just a union of a collection of 
pairwise disjoint groups, see 2.5. Example. 

2.2. Proposition: 
Assume that {(𝐺𝑖 ,⋆𝑖)}𝑖∈𝛬 is a collection of pairwise disjoint groups 
(resp. semigroups), i.e. 𝐺𝑖 ∩ 𝐺𝑗 = ∅ for any 𝑖, 𝑗 ∈ 𝛬 with 𝑖 ≠ 𝑗 and 
𝐸 is an equivalence relation on ∪𝑖∈𝛬 𝐺 defined by 𝑥𝐸𝑦 iff 𝑥, 𝑦 ∈ 𝐺𝑖  
for some 𝑖 ∈ 𝛬 . If we define ⋆  on ∪𝑖∈𝛬 𝐺 ×∪𝑖∈𝛬 𝐺  by 𝑥 ⋆ 𝑦: =
𝑥 ⋆𝑖 𝑦  if 𝑥, 𝑦 ∈ 𝐺𝑖  for some 𝑖 ∈ 𝛬 , and 𝑥 ⋆ 𝑦: = 𝑥  if 𝑥 ∈ 𝐺𝑖 , 𝑦 ∈
𝐺𝑗 , 𝑖 ≠ 𝑗  for some 𝑖, 𝑗 ∈ 𝛬 . Then, the triple (∪𝑖∈𝛬 𝐺, 𝐸,⋆)  is a 
generalized group.  
The following proposition shows that Molaei’s generalization is a 
special case of the generalization detailed in this article.   

2.3. Proposition: 
Assume that (𝐺,⋆)  is a Molaei generalized group. Let 𝐸  be an 
equivalence relation defined on 𝐺  by 𝑥𝐸𝑦  iff 𝑒(𝑥) = 𝑒(𝑦) for any 
𝑥, 𝑦 ∈ 𝐺. Then, (𝐺, 𝐸,⋆) is a generalized group. 
In Adeniran et al. (2009), they show that an abelian Molaei 
generalized group is a group. This is not true in the generalization 
detailed in this article as shown in 2.8 Example. 

2.4. Proposition: 
For a generalized group 𝐺 and 𝑥 ∈ 𝐺, we have the following:   

i. [𝑥] = [𝑥−1] = [𝑒(𝑥)].  
ii. The identity element 𝑒(𝑥) of [𝑥] is unique.  

iii. The inverse 𝑥−1 is unique.  
iv. For any 𝑥, 𝑦 ∈ 𝐺, 𝑒(𝑥) = 𝑒(𝑦) iff [𝑥] = [𝑦].  
v. 𝑒(𝑒(𝑥)) = 𝑒(𝑥−1) = 𝑒(𝑥).  

Proof. (i) It is clear, since 𝑒(𝑥), 𝑥−1 ∈ [𝑥].  

(ii) Suppose that 𝑒1(𝑥) and 𝑒2(𝑥) are both identities elements of 𝑥. 
Then, for 𝑡 ∈ [𝑥] , 𝑡 = 𝑡𝑒1(𝑥) = 𝑒1(𝑥)𝑡  and 𝑡 = 𝑡𝑒2(𝑥) =
𝑒2(𝑥)𝑡. Since, 𝑒1(𝑥), 𝑒2(𝑥) ∈ [𝑥] and 𝑒1(𝑥), 𝑒2(𝑥) are identities of 
[𝑥] , 𝑒1(𝑥) = 𝑒1(𝑥)𝑒2(𝑥) = 𝑒2(𝑥)𝑒1(𝑥)  and 𝑒2(𝑥) =
𝑒2(𝑥)𝑒1(𝑥) which implies that 𝑒1(𝑥) = 𝑒2(𝑥). 

(iii) Suppose 𝑥  has two inverses 𝑦, 𝑧 ∈ [𝑥] .  Then, 𝑦 = 𝑦𝑒(𝑦) =

𝑦𝑒(𝑥) = 𝑦𝑥𝑧 = 𝑒(𝑥)𝑧 = 𝑒(𝑧)𝑧 = 𝑧. 
(iv) Let 𝑒(𝑥) = 𝑒(𝑦) . Since 𝑒(𝑥) ∈ [𝑥]  and 𝑒(𝑦) ∈ [𝑦] , 𝑒(𝑥) =
𝑒(𝑦) ∈ [𝑥] ∩ [𝑦]  and hence [𝑥] = [𝑦] . Conversely, if [𝑥] = [𝑦] , 
then by uniqueness of the identity 𝑒(𝑥) = 𝑒(𝑦). 
(v) The proof is directly obtained from part (iv), since 𝑒(𝑥), 𝑥−1 ∈ [𝑥].  
In the following, we introduce some examples of generalized groups 
which are not groups.  

2.5. Example: 
Consider the set ℤ12: = {0,1,2, ⋯ ,11}.      Define the equivalence 
relation 𝐸  on ℤ12  by 𝑟𝐸𝑠  iff there exists 𝑘 ∈ ℤ  such that 𝑟 =
𝑠+123𝑘 for any 𝑟, 𝑠 ∈ ℤ12. The equivalence classes of this relation 
are [0] = {0,3,6,9}, [1] = {1,4,7,10}, [2] = {2,5,8,11} . Let 𝑡: =

min[𝑡]  for 𝑡 ∈ ℤ12  and 𝑘𝑡: =
𝑡−𝑡

3
 for any 𝑡 ∈ ℤ12 . Then, 0 = 0 , 

1 = 1 , 2 = 2 , 3 = 0 , 4 = 1 , 5 = 2 , 6 = 0 , 7 = 1 , 8 = 2 , 9 = 0 , 
10 = 1 , 11 = 2  and 𝑘0 = 0, 𝑘1 = 0, 𝑘2 = 0, 𝑘3 = 1, 𝑘4 =
1, 𝑘5 = 1, 𝑘5 = 1, 𝑘6 = 2, 𝑘7 = 2, 𝑘8 = 2, 𝑘9 = 3, 𝑘10 =
3, 𝑘11 = 3. Assume that the binary operation ⋆ on ℤ12 is defined by  
 𝑟 ⋆ 𝑠 = 𝑟+123(𝑘𝑟 + 𝑘𝑠) 𝑓𝑜𝑟  𝑟, 𝑠 ∈ ℤ12. 

From Table 1, the triple (ℤ12, 𝐸,⋆) is a generalized group with 𝑡 the 
identity element of [𝑡]  and 0−1 = 0, 1−1 = 1, 2−1 = 2, 3−1 =
9, 4−1 = 10, 5−1 = 11, 6−1 = 6, 7−1 = 7, 8−1 = 8, 9−1 =
3,10−1 = 4,11−1 = 5. One can check easily that (ℤ12 ,⋆) is not a 
group.  

Table  1:  The binary operation ⋆ on ℤ𝟏𝟐. 
⋆ 0 1 2 3 4 5 6 7 8 9 10 11 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

3 
4 
5 
6 
7 
8 
9 

10 
11 
0 
1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
0 
1 
2 

6 
7 
8 
9 

10 
11 
0 
1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
0 
1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
0 
1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
11 
0 
1 
2 
3 
4 
5 

9 
10 
11 
0 
1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
0 
1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
0 
1 
2 
3 
4 
5 
6 
7 
8 

 

2.6. Example: 
Let ℝ  be the set of all real numbers and fix 𝑞 ∈ ℝ , 0 < 𝑞 < 1 . 
Define 𝐸  on ℝ  by 𝑥𝐸𝑦  iff there is a 𝑘 ∈ ℤ  such that 𝑥 = 𝑞𝑘𝑦  for 
any 𝑥, 𝑦 ∈ ℝ. One can easily show that 𝐸 is an equivalence relation. 
Now, define ⋆𝑞  by  

 𝑥 ⋆𝑞 𝑦 = 𝑞𝑘𝑥+𝑘𝑦𝑥 𝑓𝑜𝑟  𝑥, 𝑦 ∈ ℝ,  
where 𝑥: = max([𝑥] ∩ [0,1))  and 𝑘𝑥: = log𝑞(𝑥/𝑥)  for any 𝑥 ∈
ℝ. Clearly, the operation ⋆𝑞  is well defined. For any 𝑥, 𝑦 ∈ [𝑡] and 
𝑡 ∈ ℝ , we can check that (𝑥) = 𝑥 = 𝑡 , 𝑞𝑘𝑦𝑥 = 𝑥 , 𝑞−𝑘𝑦𝑥 = 𝑥 , 
𝑘𝑥 = 0, 𝑘𝑞𝑘𝑦𝑥 = 𝑘𝑦 , and 𝑘𝑞−𝑘𝑦𝑥 = −𝑘𝑦 .  Also, we can show that 
for [𝑡] ⊆ ℝ and 𝑥, 𝑦, 𝑧 ∈ [𝑡]:   

 • 𝑥 ⋆𝑞 𝑦 = 𝑞𝑘𝑥+𝑘𝑦𝑡 ∈ [𝑡],  

 • 𝑥 ⋆𝑞 (𝑦 ⋆𝑞 𝑧) = 𝑥 ⋆𝑞 (𝑞𝑘𝑦+𝑘𝑧𝑦)  = 𝑞
{𝑘𝑥+𝑘

𝑞
𝑘𝑦+𝑘𝑧𝑦

}
𝑥  =

𝑞𝑘𝑥+𝑘𝑦+𝑘𝑧𝑥,    and similarly (𝑥 ⋆𝑞 𝑦) ⋆𝑞 𝑧 = 𝑞𝑘𝑥+𝑘𝑦+𝑘𝑧𝑥,  

 • 𝑡 ⋆𝑞 𝑥 = 𝑞{𝑘𝑡+𝑘𝑥}(𝑡) = 𝑞𝑘𝑥(𝑡) = 𝑥, and similarly 𝑥 ⋆𝑞 𝑡 = 𝑥.  
Hence, the triple (ℝ, 𝐸,⋆𝑞) is a generalized group.  

2.7. Example: 
Fix 𝜔 ∈ ℝ, 𝜔 > 0. Assume the triple (ℝ, 𝐸,⋆𝜔) where 𝐸 is defined 
by 𝑥𝐸𝑦  iff there is 𝑘 ∈ ℤ  such that 𝑥 = 𝑦 + 𝑘𝜔 . Easily, one can 
show that 𝐸  is an equivalence relation. The binary operation ⋆𝜔  is 
defined by 𝑥 ⋆𝜔 𝑦 = 𝑥 + (𝑘𝑥 + 𝑘𝑦)𝜔  𝑓𝑜𝑟  𝑥, 𝑦 ∈ ℝ,  

where 𝑡: = min([𝑡] ∩ [0, ∞))  and 𝑘𝑡: =
𝑡−𝑡

𝜔
 for any 𝑡 ∈ ℝ.  The 

operation ⋆𝜔  is well defined. One can check for any 𝑥, 𝑦 ∈ [𝑡] and 
𝑡 ∈ ℝ  that (𝑥) = 𝑥 = 𝑡 , 𝑥 + 𝑘𝑦𝜔 = 𝑥 , 𝑥 − 𝑘𝑦𝜔 = 𝑥 , 𝑘𝑥 = 0 , 
𝑘𝑥+𝑘𝑦𝜔 = 𝑘𝑦 , and 𝑘𝑥−𝑘𝑦𝜔 = −𝑘𝑦 . Now, for [𝑡] ⊆ ℝ, we have the 
following:   
• For any 𝑥, 𝑦 ∈ [𝑡], 𝑥 ⋆𝜔 𝑦 = 𝑡 + (𝑘𝑥 + 𝑘𝑦)𝜔 ∈ [𝑡].  

• For any 𝑥, 𝑦, 𝑧 ∈ [𝑡], we have 𝑥 ⋆𝜔 (𝑦 ⋆𝜔 𝑧) = 𝑥 ⋆𝜔 (𝑦 + (𝑘𝑦 +

𝑘𝑧)𝜔) = 𝑥 + (𝑘(𝑦+(𝑘𝑦+𝑘𝑧)𝜔) + 𝑘𝑥) 𝜔 = 𝑥 + (𝑘𝑦 + 𝑘𝑧 +
𝑘𝑥)𝜔 

and similarly (𝑥 ⋆𝜔 𝑦) ⋆𝜔 𝑧 = 𝑥 + (𝑘𝑥 + 𝑘𝑦 + 𝑘𝑧)𝜔 which show 
that ⋆𝜔  is associative on [𝑡].  

•  For𝑥 ∈ [𝑡], 𝑡 ⋆𝜔 𝑥 = (𝑡) + (𝑘𝑡 + 𝑘𝑥)𝜔 =  𝑡 + (0 + 𝑘𝑥)𝜔 =
 𝑥 + 𝑘𝑥𝜔 = 𝑥  and 𝑥 ⋆𝜔 𝑡 = 𝑥 + (𝑘𝑥 + 𝑘𝑡)𝜔  = 𝑥 + 𝑘𝑥𝜔 = 𝑥. 
Therefore 𝑡 is the identity element of [𝑡].  

Hence, the triple (ℝ, 𝐸,⋆𝜔) is a generalized group.   

2.8. Example: 
Consider the set ℤ6: = {0,1,2,3,4,5}. Define the equivalence 
relation 𝐸 on ℤ6 by 𝑟𝐸𝑠 iff there exists 𝑘 ∈ ℤ such that 𝑟 = 𝑠+62𝑘 
or 𝑠 = 𝑟+62𝑘 . Then clearly, the equivalence classes are [0] =
{0,2,4} and [1] = {1,3,5}. The binary operation ⋆ on ℤ6 is defined 
by Table 2. This triple (ℤ6, 𝐸,⋆) is an abeilan generalized group and 
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(ℤ6,⋆) is not a group.  
Table  2:  The binary operation ⋆ on ℤ𝟔. 

⋆ 0 1 2 3 4 5 
0 
1 
2 
3 
4 
5 

0 
0 
2 
0 
4 
0 

0 
1 
0 
3 
0 
5 

2 
0 
4 
0 
0 
0 

0 
3 
0 
5 
0 
1 

4 
0 
0 
0 
2 
0 

0 
5 
0 
1 
0 
3 

3. Generalized Subgroups 

In this section, we introduce and study the concept of a generalized 
subgroup. 

3.1. Definition: 
A nonempty subset 𝐻 of a generalized group (𝐺, 𝐸,⋆) is said to be a 
generalized subgroup if  (𝐻, 𝐸,⋆) is a generalized group.  
The following proposition gives an easier criterion to decide whether 
a subset of a generalized group 𝐺 is actually a generalized subgroup.  

3.2. Proposition: 
Assume that 𝐺 is a generalized group and ∅ ≠ 𝐻 ⊆ 𝐺. Then, 𝐻 is a 
generalized subgroup if it satisfies the following conditions:   

I. 𝑥 ⋆ 𝑦 ∈ 𝐻 for any 𝑥, 𝑦 ∈ 𝐻,  
II. 𝑒(𝑥) ∈ 𝐻 for any 𝑥 ∈ 𝐻,  

III. 𝑥−1 ∈ 𝐻.  

3.3. Theorem: 
Assume that 𝐺 is a generalized group and ∅ ≠ 𝐻 ⊆ 𝐺. Then, 𝐻 is a 
generalized subgroup iff 𝑥 ⋆ 𝑦−1 ∈ 𝐻 for each 𝑥, 𝑦 ∈ 𝐻.  
Proof. For the ``only if” part: Let 𝐻  be a generalized subgroup and 
𝑥, 𝑦 ∈ 𝐻 . Since 𝐻  is a generalized subgroup, 𝑦−1 ∈ 𝐻 .  Then, 
𝑥, 𝑦−1 ∈ 𝐻 which implies that 𝑥 ⋆ 𝑦−1 ∈ 𝐻. For the ``if” part: Let us 
assume that 𝑥 ⋆ 𝑦−1 ∈ 𝐻 for each 𝑥, 𝑦 ∈ 𝐻. Since 𝐻 ≠ 𝜙, ∃𝑡 ∈ 𝐻 
and by assumption, we have 𝑒(𝑡) = 𝑡 ⋆ 𝑡−1 ∈ 𝐻 . If 𝑦 ∈ 𝐻 , then 
𝑒(𝑦) ∈ 𝐻  which implies that 𝑦−1 = 𝑒(𝑦) ⋆ 𝑦−1 ∈ 𝐻 . Finally, for 
𝑥, 𝑦 ∈ 𝐻 , 𝑥, 𝑦−1 ∈ 𝐻  and then 𝑥 ⋆ 𝑦 = 𝑥 ⋆ (𝑦−1)−1 ∈ 𝐻 . In 
section 3.2. Proposition, 𝐻 is a generalized subgroup.  

3.4. Remark: 
Let 𝐺 be a generalized group. Then, the following statements hold: 

i. 𝐺  and {𝑒(𝑡)}  for each 𝑡 ∈ 𝐺  are generalized subgroups of 𝐺 . 
They are called trivial generalized subgroups of 𝐺. 

ii. If [𝑡] is a generalized subgroup of 𝐺 for each 𝑡 ∈ 𝐺, then 𝐺 is a 
union of pairwise disjoint generalized subgroups.  

iii. If 𝐺  is a group,  then every generalized subgroup of 𝐺  is a 
subgroup of 𝐺.  

iv. The intersection of a family of generalized subgroups is 
necessarily a generalized subgroup.  

3.5. Example: 
Consider the generalized group (ℝ, 𝐸,⋆𝑞)  which is defined in 
Example 2.6.  Define the subsets 𝐻1, 𝐻2  as, 𝐻1: = {𝑥 ∈ ℝ: 𝑘𝑥 ∈
2ℤ}  and 𝐻2: = {𝑥 ∈ ℝ: 𝑘𝑥 ∈ 2ℤ + 1} . We use Theorem 3.3 to 
show that 𝐻1 is a generalized subgroup, but 𝐻2 is not a generalized 
subgroup. Let 𝑥, 𝑦 ∈ 𝐻1 with [𝑥] = [𝑦].  Then, 𝑥 = 𝑦 and 𝑘𝑥, 𝑘𝑦 ∈
2ℤ . Note that −𝑘𝑦 ∈ 2ℤ , and 𝑘𝑥 − 𝑘𝑦 ∈ 2ℤ . Now, 𝑥 ⋆ 𝑦−1 =
𝑞𝑘𝑥−𝑘𝑦𝑥 ∈ 𝐻1. Hence, 𝐻1 is a generalized subgroup. However, 𝐻2 is 
not a generalized subgroup, because 𝑞3𝑥, 𝑞5𝑥 ∈ 𝐻2  and 𝑞3𝑥 ⋆
(𝑞5𝑥)−1 = 𝑞3𝑥 ⋆ 𝑞−5𝑥 = 𝑞2𝑥 ∉ 𝐻2. 

4.  Homomorphism of Generalized Groups 

In this section, we give a definition of a homomorphism of 
generalized groups with some results.  

4.1. Definition: 
Assume that 𝐺  and 𝐺′  are generalized groups. A map 𝑓: 𝐺 ⟶ 𝐺′  is 
called a homomorphism if for any 𝑎, 𝑏 ∈ 𝐺 , we have 𝑓(𝑎𝑏) =
𝑓(𝑎)𝑓(𝑏) , and [𝑓(𝑎)] = [𝑓(𝑏)]  if [𝑎] = [𝑏].The set 𝐾𝑒𝑟𝑎(𝑓): =

{𝑥 ∈ 𝐺: 𝑓(𝑥) = 𝑒(𝑎)} is called the kernel of 𝑓 with respect to 𝑎 ∈ 𝐺.  
The following theorem shows some of the basic results of the 
generalized groups homomorphisms.   

4.2. Theorem: 
Let 𝐺  and 𝐺′  be generalized groups and 𝑓: 𝐺 ⟶ 𝐺′  be a 
homomorphism. Then:  

i. 𝑓(𝑒(𝑎)) = 𝑒(𝑓(𝑎)). 
ii. 𝑓(𝑎−1) = (𝑓(𝑎))−1. 

iii. 𝑓(𝐻)  is a generalized subgroup of 𝐺′  for any generalized 
subgroup 𝐻 of 𝐺.  

iv. 𝐾𝑒𝑟𝑎(𝑓) is a generalized subgroup of 𝐺 for 𝑎 ∈ 𝐺. 
v. 𝑓 is injective iff 𝐾𝑒𝑟𝑎(𝑓) = {𝑒(𝑎)} for all 𝑎 ∈ 𝐺.  

   
Proof. (i) Let 𝑏 = 𝑓(𝑒(𝑎))  for 𝑎 ∈ 𝐺 . Then, 𝑏 = 𝑓(𝑒(𝑎)) =
𝑓(𝑒(𝑎)𝑒(𝑎)) = 𝑓(𝑒(𝑎))𝑓(𝑒(𝑎)) = 𝑏𝑏  which implies that 
𝑒(𝑏) = 𝑏. That is, 𝑒(𝑓(𝑎)) = 𝑓(𝑒(𝑎)).  
(ii) Let 𝑏 = 𝑎−1 . Then, 𝑒(𝑓(𝑎)) = 𝑓(𝑒(𝑎)) = 𝑓(𝑎𝑎−1) =
𝑓(𝑎𝑏) = 𝑓(𝑎)𝑓(𝑏)  and 𝑒(𝑓(𝑎)) = 𝑓(𝑒(𝑎)) = 𝑓(𝑎−1𝑎) =
𝑓(𝑎−1)𝑓(𝑎) = 𝑓(𝑏)𝑓(𝑎) which show that 𝑓(𝑏) is the inverse of 
𝑓(𝑎), completing the proof of (ii). 
(iii) Let 𝐾 = 𝑓(𝐻) . It suffices to check that 𝐾  is nonempty and 
𝑎𝑏−1 ∈ 𝐾  for any 𝑎, 𝑏 ∈ 𝐾 . Since 𝐻 ≠ 𝜙 , there is 𝑎 ∈ 𝐻  which 
implies that 𝑓(𝑎) ∈ 𝐾 ; and so 𝐾 ≠ 𝜙 . If 𝑎, 𝑏 ∈ 𝐾 , then 
𝑓−1(𝑎), 𝑓−1(𝑏) ∈ 𝐻  and then 𝑓−1(𝑎)(𝑓−1(𝑏))−1 ∈ 𝐻 . Now, 
𝑓(𝑓−1(𝑎)(𝑓−1(𝑏))−1) ∈ 𝑓(𝐻)  ⟹
𝑓(𝑓−1(𝑎))𝑓((𝑓−1(𝑏))−1) ∈ 𝐾  ⟹
𝑓(𝑓−1(𝑎))(𝑓(𝑓−1(𝑏)))−1 ∈ 𝐾 ⟹ 𝑎𝑏−1 ∈ 𝐾. 

(iv) Let 𝑎 ∈ 𝐺 . Since 𝑒(𝑎) ∈ 𝐾𝑒𝑟𝑎(𝑓) , 𝐾𝑒𝑟𝑎(𝑓) ≠ 𝜙 . Now, if 
𝑥, 𝑦 ∈ 𝐾𝑒𝑟𝑎(𝑓), then 𝑓(𝑥) = 𝑓(𝑦) = 𝑓(𝑒(𝑎)). We have  

𝑓(𝑥𝑦−1) = 𝑓(𝑥)𝑓(𝑦−1) = 𝑓(𝑒(𝑎))(𝑓(𝑦))−1

= 𝑓(𝑒(𝑎))(𝑓(𝑒(𝑎)))−1  
  = 𝑓(𝑒(𝑎))𝑓(𝑒(𝑎)) = 𝑓(𝑒(𝑎)). 

 This implies that 𝑥𝑦−1 ∈ 𝐾. Hence, 𝐾 is a generalized subgroup. 

(iv) Assume that 𝑓 is injective. Then, for 𝑎 ∈ 𝐺 there is at most one 
element that can be sent to the identity 𝑒(𝑓(𝑎)). Since 𝑓(𝑒(𝑥)) =
𝑒(𝑓(𝑥)) , 𝐾𝑒𝑟𝑎(𝑓) = {𝑒(𝑎)} . Conversely, let 𝐾𝑒𝑟𝑎(𝑓) = {𝑒(𝑎)} 
for all 𝑎 ∈ 𝐺  and 𝑓(𝑥) = 𝑓(𝑦)  for some 𝑥, 𝑦 ∈ 𝐺 . Then, 
𝑓(𝑥−1𝑦) = 𝑓(𝑥−1)𝑓(𝑦) = 𝑓(𝑥−1)𝑓(𝑥) = 𝑓(𝑥−1𝑥) =
𝑓(𝑒(𝑥)) = 𝑒(𝑓(𝑥)).This implies that 𝑥−1𝑦 ∈ 𝐾𝑒𝑟𝑥(𝑓), and then 
𝑥−1𝑦 = 𝑒(𝑥). Thus, 𝑥−1 = 𝑦−1 , but the inverse is unique and so 
𝑥 = 𝑦. Therefore, 𝑓 is injective.  
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